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Abstract
A fibre bundle structure is introduced over manifolds of quantum channels. This
structure has a close connection with the problem of estimating an unknown
quantum channel �θ specified by a parameter θ . It is shown that the quantum
Fisher information of the family of output states (id ⊗ �θ)(σ̃ ) maximized over
all input states σ̃ , which quantifies the ultimate statistical distinguishability
of the parameter θ , is expressed in terms of a geometrical quantity on the
fibre bundle. Using this formula, a criterion for the maximum quantum Fisher
information of the nth extended channel (id ⊗ �θ)

⊗n to be O(n) is derived.
This criterion further proves that for almost all quantum channels, the maximum
quantum Fisher information increases in the order of O(n).

PACS numbers: 02.40.−k, 03.65.Yz, 03.67.−a, 89.70.Cf

1. Introduction

Let H be a finite-dimensional (say dimC H = d) complex Hilbert space that represents the
physical system of interest, and let B(H) and S(H) denote the sets of linear operators and
density operators on H. A dynamical change � : S(H) → S(H) of the physical system,
called a quantum channel, is represented by a trace-preserving completely positive map [1–4].
It is known that � : B(H) → B(H) is completely positive if and only if (id ⊗ �)(σ̃ME) is a
positive operator, where σ̃ME ∈ S(H⊗H) is a maximally entangled pure state and id denotes
the identity map. Furthermore, the correspondence

� �−→ (id ⊗ �)(σ̃ME) (1)

establishes an affine isomorphism between the set of quantum channels on S(H) and the
convex subset

S1(H ⊗ H) :=
{
ρ̃ ∈ S(H ⊗ H); Tr2ρ̃ = 1

d
I

}
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of the extended state space S(H⊗H), where Tr2 denotes the partial trace on the second Hilbert
space. In this way, one obtains a one-to-one affine parametrization of quantum channels
[5, 6].

While the map (1) defines a faithful embedding of quantum channels into the extended state
space S(H⊗H), it does not always give an optimal embedding in view of statistical estimation.
To put it more precisely, given a one-dimensional parametric family {�θ ; θ ∈ � ⊂ R} of
quantum channels, the symmetric logarithmic derivative (SLD) Fisher information [7–9] of
the family (id ⊗ �θ)(σ̃ ) does not always take the maximum at a maximally entangled input
σ̃ = σ̃ME [6, 10]. The problem of finding an optimal estimation scheme for a given family
of quantum channels is called a quantum channel identification problem [11]. Among others,
evaluating the SLD Fisher information of the output family (id⊗�θ)

⊗n(σ̃ ) of the nth extended
channel maximized over all inputs σ̃ ∈ S((H ⊗ H)⊗n), given n ∈ N, is of fundamental
importance, because it quantifies the ultimate statistical distinguishability of the parameter θ .
This problem has been studied in two special classes of quantum channels, i.e., the generalized
Pauli channels [12] and the SU(d) channels [13], and an antithetical asymptotic behavior has
been obtained. To be exact, the maximum SLD Fisher information is O(n) in the former,
whereas it is O(n2) in the latter, which is in striking contrast to the classical statistics. What
about other quantum channels? Is there a class of channels that exhibit O(nα) with α �= 1, 2?

The purpose of this paper is to give a partial answer to this question. We show that the
maximum SLD Fisher information increases at most in the order of O(n2) for any class of
quantum channels. We further derive a simple criterion for the order to be O(n), and prove that
‘almost all’ families of quantum channels exhibit O(n). Here, the geometry of fibre bundle
over the manifold of quantum channels plays an essential role.

The paper is organized as follows. Section 2 is devoted to a brief review of differential
geometry of quantum statistical manifold. In section 3, we introduce a fibre bundle structure
over manifolds of quantum channels. It is shown that the maximal SLD Fisher information is
expressed by means of the operator norm of the ‘horizontal lift’ of the tangent vector on the
base manifold (theorem 4). In section 4, we proceed to the problem of evaluating the maximal
SLD Fisher information. We prove that it increases at most in the order of O(n2), and derive
a criterion for the order to be O(n) (theorem 5). We further prove that any full-rank quantum
channels exhibit the order O(n) (theorem 8). Since the closure of the set of full-rank quantum
channels is identical to the totality of quantum channels, this result could be paraphrased
by saying that almost all quantum channels exhibit O(n). In section 5, we present several
illustrative examples to demonstrate these results.

2. Geometry of quantum statistical manifold

Let us start with a brief review of differential geometry of quantum statistical manifold [14].
We consider the set of density operators on H of rank r:

S := {ρ ∈ S(H); rank ρ = r}.
This can be regarded as a (2dr − r2 − 1)-dimensional real manifold. Given a ρ ∈ S and
a natural number q (�r), an ordered list of vectors W = [φ̂1, . . . , φ̂q] is called an ordered
ρ-ensemble of size q if

ρ =
q∑

j=1

|φ̂j 〉〈φ̂j |.

Associated with each ρ ∈ S is the set

Wq[ρ] := {W ;W is an ordered ρ-ensemble of size q}.
2
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Letting

Wq :=
⋃
ρ∈S

Wq[ρ],

we have a canonical projection

π : Wq −→ S : [φ̂1, . . . , φ̂q] �−→
q∑

j=1

|φ̂j 〉〈φ̂j |.

There is a natural right action of the q-dimensional unitary group U(q) on Wq[ρ]:

W = [φ̂j ]1�j�q �−→ WU =
[

q∑
k=1

φ̂kukj

]
1�j�q

.

This U(q)-action on Wq[ρ] is transitive. Moreover, when q = r , each W ∈ Wr [ρ] comprises
linearly independent vectors, and the U(r) action on Wr [ρ] is free. Therefore the quadruple
(Wr , π,S, U(r)) is a principal fibre bundle [15]. For later applications, however, it is essential
to treat ordered ρ-ensembles of a general size q (�r).

The readers may be warned not to confuse the right action W �→ WU of unitary matrices
U ∈ U(q) with the left action W �→ LW := [Lφ̂1, . . . , Lφ̂q] of linear operators L ∈ B(H).
Also it should be noted that by using an abridged notation

W = [|φ̂1〉, . . . , |φ̂q〉
]
, W ∗ =

⎡
⎢⎣

〈φ̂1|
...

〈φ̂q |

⎤
⎥⎦ ,

the above-mentioned properties can be exhibited as follows:

ρ =
q∑

j=1

|φ̂j 〉〈φ̂j | ⇐⇒ ρ = WW ∗

π : Wq −→ S ⇐⇒ π : W �−→ WW ∗

U(q) preserves each fibre ⇐⇒ WW ∗ = (WU)(WU)∗

This correspondence clarifies that our formulation unifies and extends the geometry of Berry’s
phase [16–20] and that of Uhlmann’s [21–23].

One of the most fundamental quantities on the quantum statistical manifold S is the SLD
Fisher metric. A Hermitian operator-valued continuous 1-form Lρ : TρS −→ B(H) satisfying

dρ = 1
2 (ρLρ + Lρρ)

is called the SLD representation, and the bilinear form g(= gρ) : TρS × TρS → R defined by

gρ(X, Y ) := 1
2 Tr ρ(Lρ(X)Lρ(Y ) + Lρ(Y )Lρ(X))

is called the SLD Fisher metric. Although the SLD representation is not unique unless r = d,
the SLD Fisher metric is invariant under the arbitrariness of the SLD representation [24, 25].

The following theorem provides an interpretation of the SLD Fisher metric of S in terms
of the fibre bundle (Wq, π,S, U(q)) [25].

Theorem 1. Let {ρθ ; θ ∈ � ⊂ R} be a smooth curve on S and let q (�r) be an arbitrary
natural number. Then the SLD Fisher information J (ρθ ) := gρθ

(∂θ , ∂θ ) at θ = θ0 ∈ � is
given by

J (ρθ0) = 4 min
Wθ

Tr Ẇ θẆ
∗
θ |θ=θ0

3
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where the dot denotes the differentiation with respect to θ , and the minimum is taken over all
smooth families of ordered ρθ -ensembles Wθ of size q that are locally defined around θ = θ0.
The minimum is attained if and only if

Ẇ θ = 1
2Lρθ

(∂θ )Wθ (2)

holds at θ = θ0.

Proof. Let us fix a local smooth family of ρθ -ensembles W
(0)
θ = [φ̂1(θ), . . . , φ̂r (θ)] of size

r around θ = θ0. We extend it to a family of ρθ -ensembles of size q by adding (q − r)

zero vectors as [φ̂1(θ), . . . , φ̂r (θ), 0, . . . , 0], and regard it as a reference family. Letting
V (0) := [Ir |O], where Ir and O denote the r × r identity matrix and the r × (q − r) zero
matrix, the reference family is written as W

(0)
θ V (0). Given a smooth family of ρθ -ensembles

Wθ of size q, there is a smooth family Uθ of q × q unitary matrices that satisfies

Wθ = W
(0)
θ V (0)Uθ .

Then

Ẇ θ = Ẇ
(0)
θ V (0)Uθ + W

(0)
θ V (0)U̇ θ .

Since Ẇ
(0)
θ describes the change of linearly independent vectors [φ̂j (θ)]1�j�r in H, there is

an operator Lθ ∈ B(H) that satisfies

Ẇ
(0)
θ = 1

2L∗
θW

(0)
θ .

As a consequence

Ẇ θ = 1
2L∗

θWθ + WθU
∗
θ U̇ θ .

In order for this equation to be consistent with the change of ρθ , we claim

ρ̇θ = Ẇ θW
∗
θ + WθẆ

∗
θ = 1

2 (ρθLθ + L∗
θρθ ).

This shows that the operator Lθ is a logarithmic derivative.
Let Kθ := Lθ − LS

θ where LS
θ := Lρθ

(∂θ ). Then ρθKθ + K∗
θ ρθ = 0, and we have

Tr Ẇ θẆ
∗
θ = 1

4 Tr ρθ

(
LS

θ

)2
+ Tr

(
1
2K∗

θ Wθ + WθU
∗
θ U̇ θ

)(
1
2K∗

θ Wθ + WθU
∗
θ U̇ θ

)∗
.

Since the second term on the right-hand side is nonnegative, we conclude that

min
{Wθ }

Tr Ẇ θ Ẇ
∗
θ = 1

4 Tr ρθ

(
LS

θ

)2 = 1
4J (ρθ ).

The minimum is attained if and only if
1
2K∗

θ Wθ + WθU
∗
θ U̇ θ = 0

or equivalently

Ẇ θ = 1
2LS

θ Wθ . �

In order to obtain an intuitive geometrical insight into theorem 1, let us regard Wq as a
metric space with the metric

d(W(1),W(2)) :=
√√√√ q∑

j=1

(〈
φ̂

(1)
j

∣∣− 〈
φ̂

(2)
j

∣∣)(∣∣φ̂(1)
j

〉− ∣∣φ̂(2)
j

〉)
,

where W(i) = [∣∣φ̂(i)
1

〉
, . . . ,

∣∣φ̂(i)
q

〉]
. Given W ∈ π−1(ρ), we define

fW : S −→ Wq

σ �−→ argmin
W ′∈π−1(σ )

d(W,W ′).

4
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Theorem 1 implies that the minimal squared distance between two nearby fibres is given by a
quarter of the SLD Fisher information, and the differential dfW maps X ∈ TρS to X ∈ TWWq

that satisfies

XW = 1
2Lρ(X)W.

An integral curve of the differential equation (2) is called a horizontal lift of the curve ρθ .
It would be worth mentioning that when q = r , the above observation leads to a connection

of the principal fibre bundle (Wr , π,S, U(r)). Let us introduce the projection

P : TWWr −→ TWWr

X �−→ X,

where X is defined by

XW = 1
2LW(X)W, LW = π∗Lπ(W).

Now we decompose the tangent space TWWr into the direct sum

TWWr = VW ⊕ HW,

where

HW = P(TWWr ), VW = (1 − P)(TWWr ) = Ker(π∗)W .

The subspace HW has the property that HWU = RU∗HW , where RU denotes the right action
of U ∈ U(r). Thus there is a unique Ehresmann connection A in which HW becomes the
horizontal subspace:

dW = WA + 1
2LWW.

The curvature form F(A)(X, Y ) := −A([X, Y ]) becomes

WF(A)(X, Y ) = −[X, Y ]W + 1
2Lρ(π∗[X, Y ])W

= 1
4

{
[LX,LY ] − 1

2Lρ([[LX,LY ], ρ])
}
W,

where ρ := π(W) and LX := LW(X). It is shown that the curvature F(A) is closely related to
the torsion of the exponential connection ∇(e) of the base manifold S. For more information,
see [14].

3. A fibre bundle over quantum channels

Let us proceed to geometry of manifolds of quantum channels. It is well known [3] that a
quantum channel � : S(H) → S(H) is represented in the form

�(ρ) =
∑

j

AjρA∗
j

where A = {Aj }j is a finite collection of operators satisfying∑
j

A∗
jAj = I.

This is sometimes referred to as the operator sum representation. When a quantum channel �

is represented in this way, the ordered collection of operators A = {Aj }j is called a generator
of �. The number J of operators in a list A = {A1, . . . , AJ } is called the size of A. Given a
quantum channel �, let G[�] be the set of generators of �. It is further decomposed as

G[�] =
⋃
q�r

Gq[�],

5
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where Gq[�] denotes the set of generators of size q, and the minimal size r is called the rank
of �.

Let us recall the following fundamental characterization [4].

Proposition 2. Two collections of operators {Aj }1�j�J , {Bk}1�k�K(J � K) give the same
quantum channel if and only if there is a matrix Q = [Qjk] ∈ C

J×K such that QQ∗ = IJ

(IJ denotes the J × J identity matrix) and Bk = ∑
j AjQjk .

Corollary 3. Let r = rank �. Then A ∈ G[�] belongs to Gr [�] if and only if A is a linearly
independent set of operators. Further, A ∈ Gr [�] is unique up to an r × r unitary matrix.

Proposition 2 is easily seen by recalling that a generator A of � of size q is obtained by
rearranging the components of columns of a d2 × q matrix A that satisfies

1

d
AA∗ = (id ⊗ �)(σ̃ME).

Here the operator (id ⊗�)(σ̃ME) is identified with its d2 × d2 matrix representation. This fact
also implies that rank � = rank(id ⊗ �)(σ̃ME). See [5, 6] for details.

Corollary 3 shows that by regarding the set of minimal generators Gr [�] as the fibre over
�, one can define a principal fibre bundle over the set of all quantum channels of rank r. The
structure group is U(r). This principal fibre bundle was first introduced in [14]. In view of
applications to quantum channel identification problems, however, it is useful to treat fibre
spaces Gq[�] of general size q (�r), as demonstrated below.

Let us recall the quantum channel identification problem which allows extensions of the
channel [11]. Suppose that we have an unknown quantum channel that belongs to a parametric
family {�θ ; θ ∈ �} of quantum channels, and that we wish to estimate the true value of the
parameter θ as accurate as possible. Our task is to find an optimal input σ̃ ∈ S(H ⊗ H) to
the extended channel id ⊗ �θ and an optimal measurement for estimating the parameter θ of
the family (id ⊗ �θ)(σ̃ ) of output states. In what follows, we restrict ourselves, for the sake
of simplicity, to the case when θ is one-dimensional. In this case, the problem amounts to
finding an input σ̃ that maximizes the SLD Fisher information J ((id ⊗ �θ)(σ̃ )) of the output
family. When the optimal input depends on the true value of θ , we make use of an adaptive
estimation scheme [26].

Now there is a delicate problem concerning the existence of the SLD of (id ⊗ �θ)(σ̃ ).
First, the family {�θ }θ must be differentiable in some sense. Here we assume the following.

(RC1) �θ has a generator A(θ) = {Aj(θ)}1�j�r0 ∈ Gr0 [�θ ] with r0 := max{rank �θ ; θ ∈
�} such that each component Aj(θ) (1 � j � r0), is continuously differentiable in θ .

If this condition is satisfied, we simply call the family {�θ }θ smooth. Note that (RC1) is
stronger than the requirement that �θ(σ ) is continuously differentiable for all σ ∈ S(H). In
fact, (RC1) is much closer in spirit to the condition that

√
�θ(σ ) is continuously differentiable.

We next observe the following fact: the rank of the output state (id ⊗ �θ)(σ̃ ) may vary as
θ changes, even if rank �θ is constant, and the family (id ⊗ �θ)(σ̃ ) may not have an SLD at a
point where the rank changes. Let us call such a point singular, and denote the set of singular
points of (id ⊗ �θ)(σ̃ ) by �sing(σ̃ )(⊂ �). To surmount this difficulty, we first assume the
following.

(RC2) The set �sing(σ̃ ) is a finite set for all σ̃ ∈ S(H ⊗ H).
This condition ensures that theorem 1 is applicable to the evaluation of the SLD

Fisher information J ((id ⊗ �θ)(σ̃ )) at θ /∈ �sing(σ̃ ). Moreover, since the function

6
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θ �→ J ((id ⊗ �θ)(σ̃ )) is continuous at θ /∈ �sing(σ̃ ), one would expect that the SLD Fisher
information at a singular point θ0 ∈ �sing(σ̃ ) might be defined by

J ((id ⊗ �θ0)(σ̃ )) := lim
θ→θ0

J ((id ⊗ �θ)(σ̃ )). (3)

In order to put this idea into practice, we further assume the following.
(RC3) For each σ ∈ S(H), the function

θ0 �−→ min
A(θ)

Tr

⎡
⎣σ

⎛
⎝∑

j

Ȧj (θ)∗Ȧj (θ)

⎞
⎠
⎤
⎦
∣∣∣∣∣∣
θ=θ0

(4)

is continuous at all θ0 ∈ �, where the minimum is taken over all smooth families of generators
A(θ) ∈ G[�θ ] that are locally defined around θ = θ0.

Note that under (RC1), the function (4) is always upper semicontinuous. Moreover, given
a pure state σ̃ ∈ S(H ⊗ H), the right-hand side of (4) with σ := Tr1σ̃ gives the SLD Fisher
information J ((id ⊗ �θ0)(σ̃ )) at each θ0 /∈ �sing(σ̃ ); see (5) below. The condition (RC3) is,
therefore, essential only at θ0 ∈ �sing(σ̃ ). We shall call a family {�θ }θ piecewise regular if it
satisfies (RC2) and (RC3).

Let us now proceed to the problem of maximizing the SLD Fisher information
J ((id ⊗ �θ)(σ̃ )) over all input state σ̃ ∈ S(H ⊗ H). A direct evaluation of the SLD Fisher
information J ((id ⊗ �θ)(σ̃ )) as a function of input state σ̃ is often infeasible because of
computational difficulty. The following theorem gives an alternative way of evaluating the
maximal SLD Fisher information.

Theorem 4. Let {�θ ; θ ∈ � ⊂ R} be a smooth, piecewise regular one-parameter family of
quantum channels, and let q(� max{rank �θ }θ ) be an arbitrary natural number. Then

max
σ̃∈S(H⊗H)

J ((id ⊗ �θ0)(σ̃ )) = 4 min
A(θ)

∥∥∥∥∥∥
q∑

j=1

Ȧj (θ)∗Ȧj (θ)

∥∥∥∥∥∥
∣∣∣∣∣∣
θ=θ0

for all θ0 ∈ �, where ‖ · ‖ denotes the operator norm of H, and the minimum is taken over
all smooth families of generators A(θ) = {Aj(θ)}1�j�q ∈ Gq[�θ ] that are locally defined
around θ = θ0.

Proof. Since the SLD Fisher information J ((id ⊗ �θ)(σ̃ )) takes the maximum at the extreme
boundary ∂eS(H⊗H) [11], we can restrict ourselves, without loss of generality, to pure state
inputs σ̃ = |ψ〉〈ψ |, where ψ is a unit vector in H ⊗ H. Letting A(θ) = {Aj(θ)}1�j�q be a
smooth family of generators of �θ , we have

ρ̃θ := (id ⊗ �θ)(σ̃ ) =
q∑

j=1

(I ⊗ Aj(θ))|ψ〉〈ψ |(I ⊗ Aj(θ))∗.

This shows that [(I ⊗ Aj(θ))ψ]1�j�q is an ordered ρ̃θ -ensemble of size q. Moreover, the
transitive right action of unitary group U(q) on the fibre Gq[�θ ]:

{Aj(θ)}1�j�q �−→
{

q∑
k=1

Ak(θ)ukj

}
1�j�q

naturally induces a transitive right action on the fibre Wq[ρ̃θ ]:

[(I ⊗ Aj(θ))ψ]1�j�q �−→
[

q∑
k=1

((I ⊗ Ak(θ))ψ)ukj

]
1�j�q

.

7
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According to theorem 1, therefore, the SLD Fisher information J (ρ̃θ0) at θ0 /∈ �sing(σ̃ ) is
given by

1

4
J (ρ̃θ0) = min

A(θ)
TrH⊗H

∑
j

∣∣∣∣ d

dθ

(
I ⊗ Aj(θ)

)
ψ

〉 〈
d

dθ

(
I ⊗ Aj(θ)

)
ψ

∣∣∣∣
∣∣∣∣∣∣
θ=θ0

= min
A(θ)

TrH⊗H|ψ〉〈ψ |
⎛
⎝I ⊗

∑
j

Ȧj (θ)∗Ȧj (θ)

⎞
⎠
∣∣∣∣∣∣
θ=θ0

= min
A(θ)

TrHσ

⎛
⎝∑

j

Ȧj (θ)∗Ȧj (θ)

⎞
⎠
∣∣∣∣∣∣
θ=θ0

, (5)

where σ := Tr1|ψ〉〈ψ | ∈ S(H), and the minimum is taken over all smooth families of
generators A(θ) = {Aj(θ)}j ∈ Gq(�θ ) that are locally defined around θ = θ0. Now, because
of (RC3), we see that (3) is actually well defined for any pure state input σ̃ = |ψ〉〈ψ |. This
observation further ensures that, under the definition (3), the formula (5) holds for all θ0 ∈ �.

In order to evaluate the minimum in (5), let us introduce a smooth reference generator
B(θ) = {Bj(θ)}1�j�q . Then there is a smooth family of q × q unitary matrices U(θ) =
[ukj (θ)] such that

Aj(θ) =
q∑

k=1

Bk(θ)ukj (θ).

Let xk� := (1/
√−1)

∑
j u̇kju�j = (1/

√−1)(UU̇ ∗)�k . Then xk� = x�k , so that the matrix

X = [xk�] is Hermitian and
√−1X belongs to Lie algebra u(q). Now

∑
j

Ȧ∗
j Ȧj =

∑
j

(∑
k

Ḃkukj + Bku̇kj

)∗ (∑
�

Ḃ�u�j + B�u̇�j

)

=
(∑

k

Ḃ∗
kḂk

)
+

(∑
k�

Ḃ∗
kB� − B∗

k Ḃ�√−1
xk�

)
+

(∑
k�

B∗
k B�

∑
m

xkmx�m

)
. (6)

As a consequence, (5) is rewritten as

1
4J (ρ̃θ0) = min√−1X∈u(q)

fθ0(σ,X) (7)

where

fθ (σ,X) :=
(∑

k

TrσḂ∗
kḂk

)
+
∑
k�

(
Trσ

Ḃ∗
kB� − B∗

k Ḃ�√−1

)
xk�

+
∑
m

(∑
k�

(
TrσB∗

k B�

)
xkmx�m

)
. (8)

Now we are ready to prove theorem 4. The function fθ (σ,X) is linear (affine) in σ ,
and is convex in X because the coefficient matrix [TrσB∗

k B�]1�k,��q is positive semidefinite.

8
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Consequently, the maximal SLD Fisher information can be evaluated as follows.
1

4
max

σ̃∈S(H⊗H)
J ((id ⊗ �θ0)(σ̃ )) = 1

4
max

σ̃∈∂eS(H⊗H)
J ((id ⊗ �θ0)(σ̃ ))

= max
σ∈S(H)

min√−1X∈u(q)

fθ0(σ,X)

= min√−1X∈u(q)

max
σ∈S(H)

fθ0(σ,X)

= min
A(θ)

∥∥∥∥∥∥
∑

j

Ȧj (θ)∗Ȧj (θ)

∥∥∥∥∥∥
∣∣∣∣∣∣
θ=θ0

. (9)

In the second equality, the relation (7) and the surjectivity of the partial trace Tr1 :
∂eS(H ⊗ H) → S(H) are used. In the third equality, on the other hand, a version of
minimax theorem [[27], corollary 37.3.2] is used, which asserts the exchangeability of min
and max when either of the domains of the arguments is compact. �

In what follows, we abbreviate the formula (9) as

max
σ̃∈S(H⊗H)

J ((id ⊗ �θ)(σ̃ )) = 4 min
A(θ)

∥∥∥∥∥∥
q∑

j=1

Ȧj (θ)∗Ȧj (θ)

∥∥∥∥∥∥ . (10)

Several remarks are in order. First, theorem 4 gives a complete answer to the question raised
by Sarovar and Milburn [28] on how to express the maximal SLD Fisher information in terms
of generators. Originally they intended to find an expression for the maximal SLD Fisher
information maxσ∈S(H) J (�θ (σ )) of unextended channels. Actually the formula (10) only
gives its upper bound:

max
σ∈S(H)

J (�θ (σ )) � 4 min
A(θ)

∥∥∥∥∥∥
∑

j

Ȧj (θ)∗Ȧj (θ)

∥∥∥∥∥∥ . (11)

In fact, an argument similar to the proof of (7) leads to
1
4J (�θ (|ψ〉〈ψ |)) = min√−1X∈u(q)

fθ (|ψ〉〈ψ |, X) (12)

for any |ψ〉〈ψ | ∈ ∂eS(H). Therefore, the obvious inequality

max
σ∈∂eS(H)

min√−1X∈u(q)

fθ (σ,X) � max
σ∈S(H)

min√−1X∈u(q)

fθ (σ,X) (13)

leads to (11). It is important to note that the inequality (13), and hence (11), is not always
saturated. This is because the function σ �→ minX fθ (σ,X) does not in general take the
maximum at the extreme boundary ∂eS(H), although the function σ �→ fθ (σ,X) always does
for any X. (A simple example which may help intuition: the function f : [−1, 1] × R →
R : (a, x) �→ x2 + ax, which is affine in a and convex in x, has a single saddle point at
(a, x) = (0, 0).) These observations clarify the importance of extending the channel into the
form id ⊗ �θ . In section 5, we demonstrate these subtleties in more detail.

Second, the similarity between theorems 1 and 4 clarifies a parallelism between the
geometry of optimal estimation scheme for quantum states and that for quantum channels:
we need only change the Hilbert–Schmidt norm into the operator norm. In particular, by
comparison with the exposition presented after the proof of theorem 1, theorem 4 could be
interpreted as expressing the maximal SLD Fisher information by means of the operator norm
of the ‘horizontal lift’ of the tangent vector ∂θ on the base manifold. Since the maximal SLD
Fisher information quantifies the statistical distinguishability of quantum channels by means
of an optimal estimation scheme, we might as well call the quantity (10) the SLD Fisher
information of the quantum channel �θ , and shall denote it as J̃ (id ⊗ �θ).

9
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4. Application to quantum channel estimation problems

Given a family of quantum channels �θ , how fast does the SLD Fisher information
J̃ ((id ⊗ �θ)

⊗n) of the extended channel (id ⊗ �θ)
⊗n increase as n increases? It has

been shown that J̃ ((id ⊗ �θ)
⊗n) = O(n) for generalized Pauli channels [12], and that

J̃ ((id ⊗ �θ)
⊗n) = O(n2) for unitary channels [13]. In this section, we prove that ‘almost all’

families of quantum channels �θ exhibit J̃ ((id ⊗ �θ)
⊗n) = O(n).

We start with the following sufficient condition for J̃ ((id ⊗ �θ)
⊗n) = O(n).

Theorem 5. For any smooth, piecewise regular one-parameter family of quantum channels
�θ , it holds that J̃ ((id ⊗ �θ)

⊗n) � O(n2). Moreover, if �θ has a generator A(θ) that satisfies∑
j

Ȧ∗
jAj = 0,

then J̃ ((id ⊗ �θ)
⊗n) = O(n).

Corollary 6. A smooth, piecewise regular one-parameter family of quantum channels �θ

exhibits the additivity of the SLD Fisher information J̃ ((id ⊗ �θ)
⊗n) = nJ̃ (id ⊗ �θ) if �θ has

a generator A(θ) that satisfies both

∑
j

Ȧ∗
jAj = 0 and J̃ (id ⊗ �θ) = 4

∥∥∥∥∥∥
∑

j

Ȧ∗
j Ȧj

∥∥∥∥∥∥ .

We next show the following.

Lemma 7. Let � be a full-rank quantum channel. Then

rank(id ⊗ �)(|ψ〉〈ψ |) = d · (Schmidt rank of ψ)

for any ψ ∈ H⊗H, where the Schmidt rank of ψ is the number of nonzero components in the
Schmidt decomposition of ψ .

Lemma 7 implies that any one-parameter family of full-rank quantum channels is
(piecewise) regular, in that �sing(σ̃ ) = ∅ for all σ̃ ∈ ∂eS(H ⊗ H). Taking account of
this fact, we finally reach the following important consequence.

Theorem 8. Any smooth one-parameter family of full-rank quantum channels �θ exhibits
J̃ ((id ⊗ �θ)

⊗n) = O(n).

The affine isomorphism � �→ (id ⊗ �)(σ̃ME) mentioned in section 1 establishes a one-
to-one correspondence between the set of full-rank quantum channels on S(H) and the set
of full-rank density operators in S1(H ⊗ H). Therefore, the closure of the set of full-rank
quantum channels is identical to the totality of quantum channels. This observation prompts
us to interpret theorem 8 as asserting that the SLD Fisher information is of O(n) for ‘almost
all’ quantum channels.

4.1. Proof of theorem 5 and corollary 6

By a suitable rearrangement of the constituent Hilbert spaces H, we identify (id ⊗ �θ)
⊗n

with id⊗n ⊗ �⊗n
θ . Given a smooth family of generators A(θ) = {Aj(θ)}1�j�q of �θ , let

10
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A
(1)
j := Aj(θ) for j ∈ {1, . . . , q}, and let inductively

A(n+1)
µ := A(n)

µ1
⊗ A(1)

µ2
for µ := (µ1, µ2) ∈ {1, . . . , q}n × {1, . . . , q}.

Then
{
A(n)

µ ;µ ∈ {1, . . . , q}n} is a generator of �⊗n
θ . Let

αn :=
∑

µ∈{1,...,q}n
Ȧ(n)∗

µ Ȧ(n)
µ

and

βn :=
∑

µ∈{1,...,q}n
Ȧ(n)∗

µ A(n)
µ .

Since βn + β∗
n = 0, we see that

αn+1 =
∑
µ1,µ2

[
∂θ

(
A(n)

µ1
⊗ A(1)

µ2

)]∗[
∂θ

(
A(n)

µ1
⊗ A(1)

µ2

)]
= αn ⊗ I + I⊗n ⊗ α1 − 2βn ⊗ β1 (14)

and that

βn+1 =
∑
µ1,µ2

[
∂θ

(
A(n)

µ1
⊗ A(1)

µ2

)]∗[
A(n)

µ1
⊗ A(1)

µ2

]
= βn ⊗ I + I⊗n ⊗ β1. (15)

Substituting the solution

βn =
n∑

i=1

I⊗(i−1) ⊗ β1 ⊗ I⊗(n−i)

of (15) into (14), we have

αn =
∑

i, j � 0
i+j=n−1

I⊗i ⊗ α1 ⊗ I⊗j − 2
∑

i, j, k � 0
i+j+k=n−2

I⊗i ⊗ β1 ⊗ I⊗j ⊗ β1 ⊗ I⊗k. (16)

As a consequence, the operator norm of αn is evaluated as

‖αn‖ � n‖α1‖ + n(n − 1)‖β1‖2. (17)

Combining inequality (17) with theorem 4, we have

nJ̃ (id ⊗ �θ) � J̃ ((id ⊗ �θ)
⊗n) � 4 min

A(θ)
‖αn‖ � 4n‖α1‖ + 4n(n − 1)‖β1‖2,

where the last side is evaluated for an arbitrary generator A(θ) of �θ . Theorem 5 and
corollary 6 now follow immediately.

4.2. Proof of lemma 7

Let ψ ∈ H ⊗ H be represented in a Schmidt decomposition

ψ =
d∑

i=1

√
αiei ⊗ fi,

where α = (α1, . . . , αd) is a probability vector, and {ei}1�i�d and {fi}1�i�d are orthonormal
bases of H. When ψ is represented in this way, we denote it as ψα . Thus

(id ⊗ �)(|ψα〉〈ψα|) =
∑
ij

√
αiαj |ei〉〈ej | ⊗ �(|fi〉〈fj |)

= (Dα ⊗ I ) · ((id ⊗ �)(|ψu〉〈ψu|)) · (Dα ⊗ I ),

11
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where

Dα :=
√

d

d∑
i=1

√
αi |ei〉〈ei |

and u = (1/d, . . . , 1/d) denotes the uniform distribution. Since � is full-rank, the operator
(id ⊗ �)(|ψu〉〈ψu|) is strictly positive. As a consequence,

rank(id ⊗ �)(|ψα〉〈ψα|) = rank(Dα ⊗ I ) = d · rank Dα.

4.3. Proof of theorem 8

We show that any family �θ of full-rank channels has a generator A(θ) that satisfies β1 = 0.
Let B(θ) = {Bj(θ)}1�j�d2 be an arbitrary smooth reference generator of �θ of size d2, and
let A(θ) = {Aj(θ)}1�j�d2 be

Aj(θ) =
∑

k

Bk(θ)ukj (θ),

where U(θ) = [ukj (θ)] is unitary. Then

β1 =
∑

j

Ȧ∗
jAj

=
∑

j

(∑
k

Ḃkukj + Bku̇kj

)∗ (∑
�

B�u�j

)

=
∑

k

Ḃ∗
kBk +

√−1
∑
k�

B∗
k B�xk�, (18)

where xk� = (1/
√−1)

∑
j u̇kju�j (= x�k). It suffices to prove that for each θ , there is a

Hermitian matrix X = (xk�) that satisfies∑
k�

B∗
k B�xk� = √−1

∑
m

Ḃ∗
mBm. (19)

Since �θ is full-rank, the generator {Bj }1�j�d2 forms a basis of the space B(H) of linear
operators on H, and there exist complex numbers {λk}1�k�d2 and {µk}1�k�d2 that satisfy

∑
k

λkBk = I,
∑

k

µkBk =
√−1

2

∑
m

Ḃ∗
mBm.

Let

xk� := λkµ� + λ�µk.

Then xk� = x�k and

∑
k�

B∗
k B�xk� =

(∑
k

λkBk

)∗ (∑
�

µ�B�

)
+

(∑
k

µkBk

)∗ (∑
�

λ�B�

)

=
√−1

2

∑
m

(Ḃ∗
mBm − B∗

mḂm)

= √−1
∑
m

Ḃ∗
mBm.

12
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5. Examples

In this section, we present several examples to demonstrate the results obtained in sections 3
and 4.

5.1. Depolarizing channel

Let σ1, σ2, σ3 be the standard Pauli matrices. A depolarizing channel �θ : S(C2) → S(C2) is
a full-rank channel defined by the generator B(θ) = {Bj(θ)}0�j�3 with the parameter space
� = (−1/3, 1), where

B0(θ) =
√

1 + 3θ

2
I, Bj (θ) =

√
1 − θ

2
σj (1 � j � 3).

It is known [11] that

max
σ∈S(C2)

J (�θ (σ )) = 1

(1 − θ)(1 + θ)
(20)

and

max
σ̃∈S(C2⊗C

2)

J ((id ⊗ �θ)(σ̃ )) = 3

(1 − θ)(1 + 3θ)
. (21)

Let us investigate these results in the light of the inequality (13).
We make use of the Stokes parametrization for σ ∈ S(C2) as follows:

σ = 1
2 (I + aσ1 + bσ2 + cσ3), (a2 + b2 + c2 � 1). (22)

By a direct computation, the function (8) is explicitly minimized with respect to X as

min√−1X∈u(4)

fθ (σ,X) = 3(1 + θ) − 2(a2 + b2 + c2)

4(1 − θ)(1 + θ)(1 + 3θ)
. (23)

When σ is restricted to the extreme boundary ∂eS(C2) where a2 + b2 + c2 = 1, we have

min√−1X∈u(4)

fθ (σ,X)|σ∈∂eS(C2) = 1

4(1 − θ)(1 + θ)
.

This relation, combined with (12), reproduces (20) as follows:

max
σ∈S(C2)

J (�θ (σ )) = max
σ∈∂eS(C2)

J (�θ (σ )) = 4 max
σ∈∂eS(C2)

min√−1X∈u(4)

fθ (σ,X) = 1

(1 − θ)(1 + θ)
.

On the other hand, when no restriction is imposed on σ ∈ S(C2), we have

max
σ∈S(C2)

min√−1X∈u(4)

fθ (σ,X) = 3

4(1 − θ)(1 + 3θ)
.

This leads to (21). Moreover, the maximum is attained if and only if σ = I/2. Since

Tr1|ψu〉〈ψu| = I

2
,

(
ψu = 1√

2

2∑
i=1

ei ⊗ fi

)
,

we see that the maximum in (21) is attained at a maximally entangled pure state.
Note in passing that

β1 =
3∑

j=0

Ḃ∗
jBj = 0

13
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and

α1 =
3∑

j=0

Ḃ∗
j Ḃj = 3

4(1 − θ)(1 + 3θ)
I.

We therefore conclude from corollary 6 that the SLD Fisher information is additive:

J̃ ((id ⊗ �θ)
⊗n) = nJ̃ (id ⊗ �θ)).

This is in accordance with the result obtained in [12].

5.2. A rank-two quasi-unitary channel

Let �θ : S(C2) → S(C2) be a one-parameter family of rank-two channels defined by the
generator B(θ) = {B1(θ), B2(θ)} with the parameter space � = [−π/2, π/2), where

B1(θ) := 1√
2

exp(
√−1θσ1) = 1√

2
(I cos θ +

√−1σ1 sin θ)

B2(θ) := 1√
2
σ2.

We show that

max
σ∈S(C2)

J (�θ (σ )) = 2, (∀θ ∈ �) (24)

and

max
σ̃∈S(C2⊗C

2)

J ((id ⊗ �θ)(σ̃ )) = 2, (∀θ ∈ �). (25)

These results imply that the use of entanglement does not help enhance the distinguishability
in this channel.

We first prove (25) by a direct application of theorem 4. Let us set

X =
[

x y +
√−1z

y − √−1z w

]
. (26)

Then (6) becomes∑
j

Ȧ∗
j Ȧj =

(
1 + x2 + 2y2 + 2z2 + w2

2

)
I − xσ1

+ ((x + w)y cos θ − z sin θ) σ2 + ((x + w)y sin θ + z cos θ) σ3,

and its maximal eigenvalue is∥∥∥∥∥∥
∑

j

Ȧ∗
j Ȧj

∥∥∥∥∥∥ = 1 + x2 + 2y2 + 2z2 + w2 + 2
√

x2 + z2 + (x + w)2y2

2
.

Obviously this takes the minimum at x = y = z = w = 0, and (25) follows immediately
from theorem 4.

We next prove (24) and (25) in a unified manner based on (13). Let ψ ∈ C
2 ⊗ C

2 be a
unit vector such that σ = Tr1|ψ〉〈ψ | is represented as (22), and let ρθ := �θ(σ ). Then by a
direct computation, we obtain

min√−1X∈u(2)

fθ (σ,X) = 3 − (a2 + b2 + c2)

4
− det ρθ − a2

16 det ρθ

(27)

at θ /∈ �sing(|ψ〉〈ψ |) = {θ; det ρθ = 0}, where

det ρθ = 1
8 [2 − (b2 + c2) − (b2 − c2) cos 2θ − 2bc sin 2θ ].

Note that �sing(|ψ〉〈ψ |) �= ∅ if and only if b2 + c2 = 1.

14
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We first assume that b2 + c2 < 1: in this case �sing(|ψ〉〈ψ |) = ∅. With (b, c) fixed, (27)
is monotone decreasing in a2, so that

J ((id ⊗ �θ)(|ψ〉〈ψ |)) = 4 min√−1X∈u(2)

fθ (σ,X)

� 4 min√−1X∈u(2)

fθ (σ,X)|a=0 = 2 − r2 sin2(θ − φ) � 2. (28)

Here we have set (a, b, c) = (0, r cos φ, r sin φ) in the second equality.
We next assume that b2 + c2 = 1: in this case, we need to pay special attention to the

fact that �sing(|ψ〉〈ψ |) �= ∅. Let us fix a point θ0 ∈ � arbitrarily, and let us take a unit vector
ψ0 ∈ C

2 ⊗ C
2 such that σ0 := Tr1|ψ0〉〈ψ0| is represented by (a, b, c) = (0, cos θ0, sin θ0).

Then det �θ(σ0) = sin2(θ − θ0)/4, so that θ0 ∈ �sing(|ψ0〉〈ψ0|). On the other hand, we see
from (27) that

J ((id ⊗ �θ)(|ψ0〉〈ψ0|)) = 4 min√−1X∈u(2)

fθ (σ0, X) = 2 − sin2(θ − θ0) (29)

for all θ /∈ �sing(|ψ0〉〈ψ0|). Taking the limit θ → θ0, and using the convention (3) at a singular
point, we have J ((id ⊗ �θ0)(|ψ0〉〈ψ0|)) = 2. This implies that the formula (29) holds for all
θ ∈ �.

In summary, we see from (28) and (29) that

J ((id ⊗ �θ)(|ψ〉〈ψ |)) � 2

for all ψ ∈ C
2 ⊗ C

2 and θ ∈ �. Moreover, this upper bound is achieved, for instance, by
a tensor product state ψ = φ1 ⊗ φ2, where φ1 and φ2 are unit vectors such that |φ2〉〈φ2| is
specified by the Stokes parameter (a, b, c) = (0, cos θ, sin θ). This completes the proof of
(24) and (25).

Finally, we prove that β1 �= 0 for any generator A(θ) of �θ . To this end, we show that
equation (19) does not have a Hermitian solution X = (xk�). By a direct computation using
the parametrization (26) of X, (19) is reduced to(x + w

2

)
I + (y cos θ)σ2 + (y sin θ)σ3 = 1

2
σ1.

Since {I, σ1, σ2, σ3} is linearly independent, this equation does not have a solution.

5.3. A full-rank quasi-unitary channel

While theorem 8 asserts that J̃ ((id ⊗ �θ)
⊗n) = O(n) for any family of full-rank channels �θ ,

it does not always imply the additivity J̃ ((id ⊗ �θ)
⊗n) = nJ̃ (id ⊗ �θ). In this section we

demonstrate the superadditivity by an example.
Given ε ∈ [0, 1/3), let �ε

θ : S(C2) → S(C2) be defined by

�ε
θ (τ ) := (1 − 3ε)UθτU ∗

θ + ε

3∑
i=1

σiτσ ∗
i

where

Uθ := exp(
√−1θσ1) = I cos θ +

√−1σ1 sin θ

with θ ∈ (−π/2, π/2). The channel �ε
θ is full-rank if and only if ε �= 0. For sufficiently

small ε > 0, the channel is regarded as an ‘almost’ unitary channel, perturbed by a fixed
depolarizing noise. When ε = 0, on the other hand, the channel is reduced to a genuine
unitary channel, and it enjoys J̃ ((id ⊗ �0

θ )
⊗n) = O(n2) [13]. It is therefore probable that

J̃
((

id ⊗ �ε
θ

)⊗n)
> nJ̃

(
id ⊗ �ε

θ

)
for sufficiently small ε.

15
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We first show that

J̃
(
id ⊗ �ε

θ

) = 2(1 − 3ε)(2 − (5 + cos θ)ε)

1 − 2ε
. (30)

Let us take

B0(θ) := √
1 − 3εUθ , Bi(θ) := √

εσi (1 � i � 3)

as a reference generator to define fθ (τ,X). It then follows from (9) that J̃
(
id ⊗ �ε

θ

)
is the

quadruple of the saddle value of fθ (τ,X). It can be shown that the function (τ,X) �→ fθ (τ,X)

has a unique saddle point (τ0, X0), where

τ0 := 1

2

[
1 0
0 1

]
and

X0 :=
√

ε(1 − 3ε) cos θ

1 − 2ε

⎡
⎢⎢⎣

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎤
⎥⎥⎦ .

Formula (30) is then obtained by computing 4fθ (τ0, X0). Note that maxτ̃ J (
(
id ⊗ �ε

θ

)
(τ̃ )) is

attained by a maximally entangled τ̃ ∈ ∂eS(C2 ⊗ C
2) because τ0 is the barycentre of S(C2).

In order to prove the superadditivity of J̃
((

id ⊗ �ε
θ

)⊗n)
, it suffices to show that there is a

ψ ∈ (C2 ⊗ C
2)⊗2 that satisfies

J
((

id ⊗ �ε
θ

)⊗2
(|ψ〉〈ψ |)) > 2J̃

(
id ⊗ �ε

θ

)
.

As in section 4.1, we identify
(
id ⊗ �ε

θ

)⊗2
with

(
id⊗2 ⊗ �ε⊗2

θ

)
. Let {ei}i=1,2 be the standard

basis of C
2, and let

f̃ 1 := e1 ⊗ e1, f̃ 2 := 1√
2
(e1 ⊗ e2 + e2 ⊗ e1), f̃ 3 := e2 ⊗ e2.

Then {f̃ i}1�i�3 forms an orthonormal basis of an irreducible subspace of C
2 ⊗ C

2 under the
SU(2) action. It is known [13] that when ε = 0, the maximally entangled vector

ψME := 1√
3

3∑
i=1

f̃ i ⊗ f̃ i

gives an optimal (more precisely, an admissible) input state to the extended channel(
id⊗2 ⊗ �0⊗2

θ

)
. Therefore, we can expect that for sufficiently small ε, ψME would give a

nearly optimal input to the extended channel
(
id⊗2 ⊗�ε⊗2

θ

)
. By computing explicitly the SLD

of the output state
(
id⊗2 ⊗ �ε⊗2

θ

)
(|ψME〉〈ψME |) at θ = 0, we obtain

J
((

id⊗2 ⊗ �ε⊗2
θ

)
(|ψME〉〈ψME |))∣∣

θ=0 = 32(1 − 3ε)2(3 − 15ε + 20ε2)

9 − 42ε + 48ε2
. (31)

Comparing (31) with (30) at θ = 0, we see that

J
((

id⊗2 ⊗ �ε⊗2
θ

)
(|ψME〉〈ψME |))∣∣

θ=0 > 2J̃
(
id ⊗ �ε

θ

)∣∣
θ=0

for 0 � ε < (9 − √
21)/40 (=0.110 · · ·). This completes the proof of the superadditivity.

Incidentally, (30) and (31) suggest that J̃
((

id ⊗ �ε
θ

)⊗n)
would be of the form

J̃
((

id ⊗ �ε
θ

)⊗n) = O(n2)

1 + εO(n)
.

Deriving the explicit formula of J̃
((

id ⊗ �ε
θ

)⊗n)
is a challenging open problem.
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6. Concluding remarks

We introduced a fibre bundle structure over manifolds of quantum channels. Under mild
regularity conditions, it was shown that the SLD Fisher information J̃ (id ⊗ �θ) of a one-
paremeter family of quantum channels �θ is expressed by means of the operator norm of the
horizontal lift of the tangent vector on the base manifold. Using this formula, we proved that
J̃ ((id ⊗ �θ)

⊗n) = O(n) for any family of full-rank channels �θ . This result asserts that for
almost all quantum channels, the maximum SLD Fisher information increases in the order of
O(n). We presented several illustrative examples for the sake of demonstration.

There are many open problems left. Among others, investigating the order of
J̃ ((id ⊗ �θ)

⊗n) for channels �θ of ranks in between would be of primary importance. We
observe that the solution (16) also leads to the following evaluation:

n(n − 1)‖β1‖2 − n‖α1‖ � ‖αn‖ � n(n − 1)‖β1‖2 + n‖α1‖ (32)

for any generator A(θ) of �θ . This suggests the following dichotomy: the order of
J̃ ((id⊗�θ)

⊗n) is either O(n) or O(n2), and is O(n) if and only if �θ has a generator A(θ) that
satisfies β1 = 0. If this were true, the rank-two quasi-unitary channel investigated in section 5.2
would give an example of non-unitary channel that exhibits J̃ ((id ⊗ �θ)

⊗n) = O(n2).
Unfortunately, because

J̃ ((id ⊗ �θ)
⊗n) � 4 min

A(θ)
‖αn‖,

(32) does not conclude anything about this conjecture at present.
Another important subject is to establish a perturbation theory of quantum channels. In

an experiment, noise from the environment is inevitable. According to theorem 8, a slight
perturbation applied to a unitary channel induces a transition of the increasing order from
O(n2) to O(n). Does this mean that the O(n2) increase of the quantum Fisher information
cannot be detected by an experiment? Actually, given a family �ε

θ of perturbed unitary
channels, the SLD Fisher information J̃

((
id ⊗ �ε

θ

)⊗n)
would be continuous in the magnitude

ε of perturbation for each n, as demonstrated in section 5.3, and there is a hope for detecting
the O(n2) increase approximately. A detailed analysis of the transition from O(n2) to O(n)

is, therefore, important not only from a theoretical point of view but also from an experimental
point of view.
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